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Motivation

There are many areas in harmonic analysis which require non-absolutely
convergent integration processes more powerful than the Lebesgue
integration.
In particular Denjoy-Perron and Kurzweil-Henstock type integrals, defined
with respect to various derivation bases, are used to solve the problem of
recovering, by generalized Fourier formulae, the coefficients of orthogonal
series.

In turn the problem of recovering the coefficients is usually reduced to
the problem of recovering a primitive from its derivative where the
differentiation is understood in the respective sense.
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Descriptive characterization in a classical case

The known descriptive characterization of the indefinite Lebesgue integral
in terms of absolutely continuous functions is equivalent to the following
statement:
Characterization of L-integral in terms of measure

A function f is L-integrable on [a, b] if and only if there exists a function
F of bounded variation on [a, b] which generates an absolutely continuous
Lebesgue-Stieltjes measure and F ′(x) = f(x) a.e.; the function F (x) −
F (a) being the indefinite L-integral of f .

In case of non-absolute generalizations of the Lebesgue integrals (of
Denjoy-Perron- or Henstock-type) indefinite integrals fail to be of
bounded variation and so cannot generate a finite Stieltjes measure.

In this case a descriptive characterization can be obtained in terms of
some generalized σ-finite outer measure (so-called variational measure)
generated by the indefinite integral.
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Variational measures

Variational measures can be defined with respect to various derivate
bases.

In the simplest case of the full interval basis and of the original
Henstock-Kurzweil integral it was introduced by B. Thomson in

B. S. Thomson, Derivates of interval functions, Momoirs Amer. Math
Soc., 452, Providence, 1991.

It was used to give a full descriptive characterization of the classical
Henstock-Kurzweil integral in
B. Bongiorno, L. di Piazza, V. Skvortsov, A new full descriptive
characterization of Denjoy-Perron integral, Real Analysis Exchange vol.
20 (2) 1995 - 1996, pp. 656 - 663.
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Derivation basis

To define variational measure as well as to give a construction of integral
we need a notion of derivation basis

Let I be a collection of closed subintervals of a fixed interval K.

The derivation basis B is defined as the collection of basis sets

βδ := {(I,x) : I ∈ I, x ∈ I ⊂ U(x, δ(x))}

where δ is the so-called gauge, i.e., a positive function defined on K, and
U(x, r) denotes the neighborhood of x of radius r.

So we have
B := {βδ : δ : K → (0,∞)} .

If (I,x) ∈ βδ, we say that x is the tag of I and that the pair (I,x) is

δ-fine.
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βδ-partition

A βδ-partition is a finite collection π of elements of βδ, where the dist
inct elements (I ′,x′) and (I ′′,x′′) in π have I ′ and I ′′ non-overlapping,
i.e., they have no inner points in common. Let E ∈ I. Then π ⊂ βδ(E)
is called βδ-partition (or δ-fine β-partition) in E. If

⋃
(I,x)∈π I = E then

π is called δ-fine β-partition of E.



Variational measure of E generated by F

Definition of variational measure

For F : [a, b] → R, a set E ∈ [a, b] and a fixed gauge δ on E, we define
δ-variation of F on E by

Vδ(E) = V ar(E,F, δ) := sup{
k∑
i=1

|F (di)− F (ci)|}

where sup is taken over all δ-fine partition {[ci, di], x}i in [a, b] tagged in
E.

Variational measure of E generated by F is defined by

VF (E) := inf
δ
V ar(E,F, δ)

where inf is taken over all gauges tagged in E.

It can be checked that VF is a metric outer measure.
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Kurzweil-Henstock integral

Kurzweil-Henstock integral on the interval K.

Definition (HB-integral)

A point-function f on K ∈ I is said to be HB-integrable on K, with
HB-integral A, if for every ε > 0, there exists a gauge δ such that for any
βδ-partition π of K we have:∣∣∣∣∣∣

∑
(I,x)∈π

f(x)|I| −A

∣∣∣∣∣∣ < ε.

We denote the integral value A by (HB)
´
K
f.

In the case of usual interval bases (i.e., when I is the collection of all
closed subintervals of an interval K) the class of indefinite
Henstock-Kurzweil integrals (which is equivalent in this case to
Denjoy-Perron integral) coincides with the class of functions generating
an absolutely continuous variational measures, see Lukashenko T.P.,
Skvortsov V.A., Solodov A.P., Generalized integrals, Liberkom, Moscow,
2011.
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Kurzweil-Henstock integral

The indefinite HB-integral is an additive (but not σ-additive) function on
the family I of B-intervals

Descriptive characterization of HB-integral

A function f is HB-integrable on [a, b] if and only if there exists a function
F on [a, b] which generates an absolutely continuous variational measure,
the function F (x)−F (a) being the indefinite HB-integral of f with f(x) =
F ′B(x) a.e.
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B-derivative

Now we define the DB-derivative

Definition (B-derivative)

Given a B-interval function F , the B-derivatives of F at a point x, with
respect to the basis B is defined as

DBF (x) := lim
δ(x)→0

{F (I)

|I|
: (I,x)are δ-fine intervals tagged in x}.

F is B-differentiable at x if the B-derivative at this point exists and is
finite.
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Lr-variational measure

A little bit more general case we obtain if we replace usual increments in
the definitions of derivatives, integrals and variations with the increments
in the space Lr[a, b], r ≥ 1.

Definition of Lr-variational measure

For F ∈ Lr[a, b] and a tagged interval (I, x), let

∆rF (I, x) =

(
1

|I|

ˆ
I

|F (y)− F (x)|rdy
)1/r

.

For a set E ∈ [a, b] and a fixed gauge δ on E, we define δ-variation of F
on E by

Var(E,F, δ, r) = sup

q∑
i=1

∆rF (Ii, xi)

where the sup is taken over all δ-fine partition {(Ii, xi)} in [a, b] tagged in
E. Let

VF (E) = inf
δ

Var(E,F, δ, r)

where the inf is taken over all gauges tagged in E.
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Lr-Henstock-Kurzweil integral

In 2004 Musial and Sagher introduced the Lr-Henstock-Kurzweil integral
(see P. Musial, Y. Sagher, The Lr Henstock-Kurzweil integral, Studia
Math, vol. 160 (1) 2004)

Definition of Lr-Henstock-Kurzweil integral

A function f : [a, b] → R is Lr-Henstock-Kurzweil integrable (HKr-
integrable) on [a, b] if there exists a function F ∈ Lr [a, b] so that for any
ε > 0 there exists a gauge δ so that for any finite collection of nonover-
lapping δ-fine tagged intervals Q = {(xi, [ci, di]) , 1 ≤ i ≤ q} we have

q∑
i=1

(
1

di − ci

ˆ di

ci

|F (y)− F (xi)− f (xi) (y − xi)|r dy

)1/r

< ε.

The function F in this Definition is unique up to an additive constant, so
we can consider the indefinite HKr-integral.
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Lr-Henstock-Kurzweil integral

Definition of Lr-derivative ()

We say F is Lr-differentiable at x, if there exists a real number α such
that (

1

h

ˆ h

−h
|F (x+ t)− F (x)− αt|r dt

) 1
r

= o (h) .

In this case we say that α is the Lr-derivative at x and denote F ′r(x) = α.

This notion was introduced by Calderon and Zygmund in order to
establish pointwise estimates for solutions of elliptic partial differential
equation.

It can be proved that the indefinite HKr-integral F is Lr-differentiable
a.e. and F ′r(x) = f(x) a.e.
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Descriptive characterization of Lr-Henstock-Kurzweil
integral

A variational measure VF is said to be absolutely continuous on a set
E ⊂ [a, b] if VF (N) = 0 for any N ⊂ E such that µN = 0.

Descriptive characterization of Lr-Henstock-Kurzweil integral (it is a joint
result with P. Musial (USA) and F. Tulone (Italy)) to be published in Math.
Notes

A function f is HKr-integrable on [a, b] if and only if there exists a func-
tion F on [a, b] which generates an absolutely continuous Lr-variational
measure and which is Lr-differentiable almost everywhere with F ′r = f
a.e.; the function F (x)− F (a) being the indefinite HKr-integral of f .
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σ-finiteness of variational measure

Theorem

If the Lr-variational measure generated by a function F : [a, b] → R is
absolutely continuous on a closed set E ⊂ [a, b], then VF is σ-finite on E.

Definition of ACGr class

Let E ⊂ [a, b]. We say that F ∈ ACr(E) if for all ε > 0 there exist
η > 0 and a gauge δ defined on E so that for any finite collection of
nonoverlapping δ-fine tagged intervals {(xi, Ii), 1 ≤ i ≤ q} with xi ∈ E,
and such that

∑q
i=1 |Ii| < η we have

q∑
i=1

∆rF (Ii, xi) < ε. (1)

We say that F ∈ ACGr(E) if E can be written as E = ∪∞n=1En where
F ∈ ACr(En) for all n.
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∆rF (Ii, xi) < ε. (1)

We say that F ∈ ACGr(E) if E can be written as E = ∪∞n=1En where
F ∈ ACr(En) for all n.



σ-finiteness of variational measure and ACGr([a, b]) class

The next two theorems show that the class ACGr([a, b]) coincides with
the class of functions which generate absolutely continuous Lr-variational
measures.
Theorem

Suppose that the Lr-variational measure VF generated by a function
F : [a, b]→ R is finite on a set E⊂ [a, b]. Then VF is absolutely continu-
ous on E if and only if F ∈ ACr(E).

Remark

Note that the proof of sufficiency in the above theorem does not require
finiteness of VF on E. Hence the condition F ∈ ACr(E) always implies
absolute continuity of Lr-variational measure VF on E.



σ-finiteness of variational measure and ACGr([a, b]) class

Theorem

A function F : [a, b]→ R generates an absolutely continuous Lr-variational
measure on [a, b] if and only if F ∈ ACGr([a, b]).

Theorem

If a function F : [a, b]→ R is Lr-differentiable almost everywhere on [a, b]
then it generates an absolutely continuous variational measure on [a, b] if
and only if it is the indefinite HKr-integral of its Lr-derivative F ′r.
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Problem

Remark

It is most likely that the a priori assumption on Lr-differentiability of F can
be dropped in the above theorems. So up to now we leave open the fol-
lowing question: is the class of functions generating absolutely continuous
Lr-variational measure (or, equivalently, the class ACGr[a, b]) coincides
with the class of HKr-integral functions? In other words: is each function
in those classes Lr-differentiable almost everywhere? Note that in the case
of the classical Kurzweil-Henstock integral the answer to these questions
is positive



Other examples of bases and variational measures w.r. to
them

In classical harmonic analysis various kind of symmetric bases are useful.
For example approximate symmetric basis in definition of which basis set
are constituted by pairs ([x− h, x+ h], x) and points x− h and x+ h
belong to a set Ex with x being a point of density for Ex.

Approximate symmetric Henstock-type integral, corresponding to this
basis, recovers, by generalized Fourier formulas, coefficients of any
everywhere convergent trigonometric series.

This integral also can be described in terms of correspondent symmetric
variational measure
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Other examples of bases and variational measures w.r. to
them

In Dyadic Analysis the dyadic basis on X = [0, 1] and on [0, 1]m is used
In the case of [0, 1] the family I of B-intervals is constituted by the
closures of dyadic intervals

J
(n)
j :=

[
j

2n
,
j + 1

2n

)
, 0 ≤ j ≤ 2n − 1, n = 0, 1, 2, . . . .

If X = [0, 1]m, B-intervals are defined as the closures of m-dimensional
dyadic intervals

J
(n)
j := J

(n1)
j1
× . . .× J (nm)

jm

where j = (j1, . . . , jm) and n = (n1, . . . , nm).

Dyadic Henstock integral, corresponding to this basis, is used to recover,
by generalized Fourier formulas, coefficients of convergent Walsh series.
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